Git for Graduates

Joe Fuller-Gray

2024

Contents

About 1
What Git is 2
Why you should use it 2
Where you can get it from 3
Linux. 3
MacOS, 3
Windows, 4
How to configure it 4
How to use it 4
Initialising a repository 4
Terminology 5
Makingchanges 6
Commiteditors 7
Anatomy ofacommit. 8

The stagingarea 9
Ignoringfiles 9
Viewing history 10
Searching 11
Merging and Rebasing 11
Merge, 11

Rebase 12
Ruleofthumb 13

Fetchingchanges 13

Mergeconflicts 14

Conflict resolutiontools 15

How to (re)write history 18
Rebasing 20
Interactive Rebasing 20
What a commit should contain 21
Writing a good commit message 21
Badexamples. 23
Agoodexample 24
Pushingyourchanges 25
How to work with other developers 26
Branching 26
Sending and applying patches 27
Cherry picking 28
Changerequests 28
Reviewing change requests 29
Fixes in your change request 30
Tagging 32
Agoodhistory L. 33
Extras 34
Bisection 34
Semanticbranches 34
Semanticcommits 35
Conventional commits 36
Linting commit messages 37
Aliases 37

Reflog, 37

Local configuration 38

Hooks 39
Porcelains 39
Alternative workflows 40
Centralised 42
Short-Lived Feature Branching 42
Personal Branching 42

Forking 43

About

A key part of professional software development is
collaborating with others. The most common way to
do this is with version control software, the presently
dominant one being git.

Many universities don’t teach git to the degree re-
quired for professional work. This piece aims to pro-
vide a simple guide to using git for working with other
developers, complete with a simple workflow.

This document assumes some faculty with the com-
mand line and is aimed towards developers using a
Linux distribution or MacOS for their work. It is in-
tended to take someone who can push a history to
GitHub and turn them into someone who can con-
tribute meaningful changes to a repository.

This is not intended to be an exhaustive guide to Git.
For a more in-depth manual, read “Pro Git” by Scott
Chacon, available at https://git-scm.com/book/en/v2.

All Git commands are valid as of git version 2.45.2.

https://git-scm.com/book/en/v2

What Git is

Git is a fast, scalable, distributed revision
control system with an unusually rich com-
mand set that provides both high-level op-
erations and full access to internals.

Description from https://git-scm.com/docs/
git.html

Git is version control software. It is designed to track
versions of human readable text, although if it’s a file,
it can be tracked by Git.

In 2023’s Stack Overflow survey, it was noted that 94%
of all software developers use Git. The alternative to
using Git seems to be not using version control.

Why you should use it

Version control software is a vital tool because it allows
multiple developers to share a history of a particular
project.

Let’s suppose you don’t use it, and you want to col-
laborate with someone else on a document you have
written. You make your changes, and they make theirs.
Then you send them to each other. How do you know
who made which changes? How do you know which
version is the definitive original document? How do

https://git-scm.com/docs/git.html
https://git-scm.com/docs/git.html

you share your reasoning with the other person?

Version control software such as Git solves this prob-
lem by requiring both users to mark their changes and
send them to a central repository so that both users
can see the history of the project.

Where you can get it from

The most common way to get it is to download it
through your operating system’s package manager.

Linux

Linux distribution Command

Debian /Ubuntu apt install git

Fedora yum install git
Arch Linux pacman -S git
MacOS

MacOS package manager Command

Homebrew brew install git
MacPorts port install git

Windows

On Windows, you can download an installer from https:
//git-scm.com/downloads, which also includes some
GUI tools for using Git.

How to configure it

On first run, it will prompt you to set your name and
your email address.

In the terminal, run the following:

git config --global user.name "<Your-name>"
git config --global user.email "<Your-email>"

This tells Git to use your name and your email when
you write to the history.

This is all you need right now. Customisation can come
later once you’re more familiar with the software.

How to use it

Initialising a repository

Inside your folder, you can initialise a Git repository by
simply running git init.

You will need to make a first commit. Common practice
is to simply make a barebones README and commit

https://git-scm.com/downloads
https://git-scm.com/downloads

that.

echo "$YOUR_PROJECT_NAME" > README.md
git init

git add README.md

git commit -m "init: Add README.md"

Terminology

HEAD refers to the topmost commit on a currently
checked-out branch.

A commit is a change, consisting of a diff and a com-
mit message.

Checking out refers to a change in repository state.

A diff is a text representation of the difference between
two files. Git also treats a change on the same file as
a diff.

A branch refers to a history of the repository forked
from a common ancestor from another branch.

The original branch is usually called main. Git doesn'’t
require the original branch to be called main. It has
been called master before, and it's sometimes referred
to as trunk, from previous version control systems.
For the sake of consistency, refer to it as main.

Making changes

Once you have your repository, you can begin to make
your changes. Standard practice is to only make
changes to human-readable files. Binary files or gen-
erated files should not be committed to the Git history,
because they can be quite large and they’re harder to
visualise when browsing the Git history.

You can check what changes are being made to track
files by viewing the diff.

git diff

Now that you have your changes, you can add them
to the staging area then make your commit.

git add <file>
git commit

If you want to add files in chunks, you can use git
add -p to patch-add changes.

If you want to add everything that currently is not be-
ing tracked, you can use git add ., although it is
suggested that you don’t do this because it’s difficult
to track what’s actually going in there.

Removing a file is easy: git rm removes the file
and adds its removal to the staging area. This is
preferred over a simple rm followed by a git add
<removed-file> for simplicity’s sake.

Moving a file is similar: git mv moves one file to an-
other location and adds that change to the staging
area, and is preferred over mv followed by git add for
similar reasons.

Commit editors

Without prior configuration, most Linux distributions
set their $EDITOR environment variable to nano.

- Terminal @l i = = o x

GNU nanc 8.0 git-for-grads/.git/COMMIT EDITMSG

enter th
#' will be ign

te Out [§§ where Is J

Figure 1: GNU Nano as a commit editor

If you want to use another editor, set the editor in your
Git config:

git config --global core.editor "<editor>"

Anatomy of a commit

A commit looks like this:

commit df8653aa
Author: joefg <joefg@example.com>
Date: Fri Apr 26 16:05:12 2024 +0100

init: Add .gitignore

diff --git a/.gitignore b/.gitignore
new file mode 100644

index 0000000..a136337

--- /dev/null

+++ b/.gitignore

@@ -0,0 +1 @@

+%.pdf

The commit hash (or SHA) is the unique reference for
a commit. It is derived from the content of the commit
plus the date plus the author (and a few more things
than that, but that is past the scope of this simple
gude). Changing these things changes the commit
hash. The general rule here is that if you change the
commit hash, you change the commit. Avoid changing

already-pushed commits!

The author and email comes from your Git configura-

tion.

The commit message is what the developer describes
the commit as.

The diff is the textual representation of the changes to
the repository in the commit.

To view a single commit, use git show.

The staging area

git add adds changes to the staging area. Git is not
an atomic version controller: the developer ultimately
dictates which changes enter a commit.

git reset HEAD <file> removes that file from the
staging area but keeps its changes in the file. To
remove everything from the staging area, git reset
HEAD or just git reset.

Ignoring files

The .gitignore file is used to define what files and
what sorts of files should not go into the commit his-
tory.

file # Ignore all files called file
*.exe # Ignore all files ending in ~.exe’

build/* # Ignore everything in ~build/"

build/ # Ignore directories called “build"

A good list of sample ones can be found on https:
/lgithub.com/github/gitignore.

It's advantageous to keep a folder structure in version
control, even if you don’t want to keep the files within
a specific folder in there.

For that reason, it is recommended to keep a
.gitignore inside each folder and handling ignored
files on a per-folder basis. If you just want the folder,
ignore everything in that folder, but keep the gitignore
in there.

Viewing history

Viewing a repository’s history is simple. Just use git
log.

By default this shows a list of commits on the current
branch. To see all commits in the repository, use git
log --all.

For a more compact view with just the header of each
commit, use git log --oneline.

There are GUI tools available to view a history in a
more intuitive fashion: gitk, which ships with Git, is
one such tool.

https://github.com/github/gitignore
https://github.com/github/gitignore

Searching

To finding a string inside tracked files, use git grep.
Some common flags to use with a git grep include:

git grep -i "<string>"

git grep -n "<string>"

Merging and Rebasing

There are two ways to introduce changes made on
other branches into your branch: through a merge or
a rebase.

Merge

A merge adds a single commit to the current branch
containing all of the changes made onto another
branch. Using our branch and main as an example,
we want to introduce changes made on our branch
into main.

This new commit is a merge commit. It doesn’t contain
any of the commits made on the feature branch, but it
does contain the diff and a commit message.

Because this doesn’t introduce any additional com-
mits or rewrite history, this is preferred when making

main

Figure 2: Merging feature into main
changes that affect main.

Rebase

A rebase changes the base of the current branch to
the head of the branch you’re rebasing onto.

main —
Y o ® & o > K
RN R & & & R
$ » & & 2 &
< S o o W g & A o & R
Teature [e e —

Figure 3: Main and feature

A rebase replays commits made from your branch
on top of the other branch, meaning conflicts appear
in your commits, rather than in the other branch’s
commits.

This does change the commits that you put on top of
the other branch. It does not introduce merge commits,
which makes tracking which commits were introduced

main e S
& «‘*@ &ﬁ o & @@f & &‘,@” ;}ﬂé) 6@*\
rrr Lo—o
Figure 4: Main and feature after rebase

in which changes difficult. It is for this reason that
rebasing is preferred on your own branches.

Rule of thumb

A good rule of thumb is merge globally, rebase lo-
cally.

If you've pushed your changes and other people are
using the branch, merge.

If your branch is something that only you and at most
a few other people are using, rebase.

Make sure everyone who uses your branch is aware
of this before rebasing.

Fetching changes

Fetching changes on your branch from the remote
source is done with a git pull. By default, this works
as a fetch from the remote to origin/main followed
by a merge of origin/main into your main. This can

be split up into two commands: git fetch and git
merge origin/main.

Instead of a fetch merge, a user can fetch rebase: git
fetch && git rebase. Doing this means that merge
conflicts have to be resolved at rebase time, not after
the merge.

It is possible to use the rebase behaviour in a git
pull by adding this to your configuration:

git config --global pull.rebase true

Merge conflicts

When the introduction of one commit makes changes
that another commit will make, you see a merge con-
flict, in the form of this appearing in a file:

<<<<<<< HEAD

conflicting change
>>>>>>> branch

This is accompanied by an error message which looks
like this:

$ git rebase main

Auto-merging README.md

CONFLICT (content): Merge conflict in <file>
error: could not apply 73cc672... <commit>

At this point you have to decide which change you wish
to keep going forward. You do this by removing the
change you don’t want, then using git add <file>,
then continuing with the merge or rebase.

Conflict resolution tools

In addition to manually editing a conflicting file, there
are tools which provide a cleaner conflict resolution
mechanism.

Here, we call the file from the current branch LOCAL;
the common ancestor between two branches BASE;
the file that you wish to merge REMOTE; and the final
result MERGED.

VSCode has a tool to do this: it can edit the merge
conflict by prompting the user to select which chunk
to keep, or it can show the conflict on the file side-by-
side and then prompt the user to select which chunk
to keep.

Vim (and its derivative Neovim) has vimdiff which
can be used as a mergetool, which puts LOCAL on the
top left, BASE on the top centre, REMOTE on the top right,
with MERGED on the bottom.

Regardless of which one you use, you can configure
Git to use the right one to use by setting the diff.tool
variable in your config.

git config --global diff.tool "<diff-tool>"

text.md (Working Tree) (text.md) - git-for-grads - Code - 0SS

File Edit Selec ew Go Run Terminal Help

«

run your merge i n run your

nerge conflict.
5>>>>>> 5cdf233 (drop! merge conflict ahoy) (Inconing Cl

X ¢ 245cacd3!(Rebasing) ®0A0 - VISU Ln376,Col13 Spacs UTF-8 LF Markdown O

Figure 5: VSCode Mergetool

Terminal
TEST DOCUMENT # TEST DOCUMENT

This is a t document. [Thi
It has many line

Lorem Ipsum etc. Blah bl

<<<<<<< HEAD

Lorem Ipsum etc. Blah blah blah. Words words words.

Q
TEST DOCUMENT

This is a t
It has many

This is a paragraph which describes something. Lorem Ipsum, etc
>>>>>>> b7cca54 (Add
DME . md

Figure 6: Vimdiff Mergetool

Once you have this set up, you can run your merge
tool by running git mergetool.

How to (re)write history

Each commit adds history to the state of the branch
which you’re working on. If you haven’t pushed your
changes, you can still alter your history without it af-
fecting anyone else.

If you have lots of small commits that look like this:

<HEAD> #05 - styling
#04 - make tests work
#03 - remove broken stuff
#02 - add more stuff
#01 - add stuff
#00 - draft: new widget
<main> #-1 - Merge branch feature/whatever

It's poor form to push these to a main branch, so you
should squash these into a single commit. You can
rewrite history by resetting the pointer of the current
branch’s state to where the first commit was.

git reset --soft
git commit

git reset --soft #-1 takes the history back to after
commit #-1, but keeps all of the changes in the staging
area.

You can do the same thing by referring to HEAD"7,
which could be read as HEAD - 7, or 7 commits back
from HEAD. HEAD™N is shorthand for N commits back
from HEAD.

You can also refer to branches. When you refer to the
branch, you are referring to the top-most commit on
that branch, so you could achieve the same effect by
using git reset --soft origin/main, which resets
to the common ancestor of origin/main.

After this, you can git commit and write a commit
message.

If you haven’t pushed already, git push would work
because nobody else has the old history.

If you have pushed already, use git push
--force-with-lease. A --force makes the Git
host replace the old history with the new history, and
anyone else pulling that branch would have their
history replaced with this history. To avoid cases
where one user is pulling and another is pushing, a
--force-with-lease makes the Git host check that
there is only one user pushing or pulling at a time.

Rebasing
Interactive Rebasing

Another way to do this is witih an interactive rebase.
The rebase command changes the history between
HEAD and the given commit.

An interactive rebase shows you which commits are
being moved when the rebase happens. To do this,
use git rebase -i <commit>, and you will be pre-
sented with a menu that looks like this:

pick <commit> <commit-header>

Rebase <start-commit>..<end-commit>
onto <new-base>

Commands:

p, pick <commit>
r, reword <commit>
f, fixup <commit>
s, squash <commit>
e, edit <commit>
d, drop <commit>

H OH HF H H H H H*

+*+

A pick uses that commit as-is.

A reword allows the developer to reword the commit
without changing its contents.

A fixup allows the developer to merge that commit

into the commit above it without modifying its commit
message.

A squash allows the developer to merge that commit
into the commit above, appending its commit mes-
sage into the commit above it (or editing the combined
commit message).

An edit stops the rebase at that commit, allowing the
developer to add or alter the staging area, before using
git rebase --continue to resume the rebase.

A drop removes the commit from the history.

What a commit should contain

Each commit should represent the known good state
of the repository: the functionality should be working if
introduced and nothing should be broken if removed.
Each commit should pass all automated testing.

Commits should be as small as possible: it should
introduce one feature at a time. A big commit which
introduces more than one feature is harder for a re-
viewer to understand and the change would appear to
be larger than it actually is.

Writing a good commit message

The commit message will be attached to your change,
so you need to make sure the following:

1. It makes sense.

Someone in the future might want to see why you
made a change, and one of the first things they’ll do
is find the commit in which a change was made. It
takes seconds to write a simple “makes thing do x”
without an explaination, but it could take hours to find
exactly why. Sticking the explaination in saves the
future developer potentially hours of work.

2. It is written in an imperative tone in the present
tense.

You should view a commit message as what applying
the changes in the commit message will do, rather
than what it has done. This takes some getting used to.
The reason for this is that git itself uses the imperative
style in the present tense for merging and rebasing
(which will be discussed later), so it makes sense to
also write in this style.

A good way to tell if your message fits this style is
to add “This commit, when applied, will” before the
message. If it makes sense after this, it is in the
imperative tone in the present tense.

3. ltincludes some reference to the thing it’s trying
to solve.

Your commit might form part of work inside a work
item, or a ticket. Putting a reference to that work item
inside your commit allows a future developer to see

which work item the commit was part of so they can
get more context as to why a change was made.

Broadly, it should follow:

Title: Summary, imperative, start upper-
case, no full stop (no more than 50 charac-
ters)

Body: Explain what the change does and
why it was needed. Keep it to 72 charac-
ters per line.

You can add more paragraphs if you want
after a blank line.

+ Bullet points are good.
+ Blank lines between each bullet point

Part-of: ticket-id

Bad examples

commit df8653a (HEAD -> main)
Author: joefg <joefg@example.com>
Date: Fri Apr 26 16:05:12 2024 +0100

I fixed this button so it works

This is a particularly poor commit message. It’s in the
wrong tense, so it assumes that the commit has done
something already rather than stating what it will do.

“This button” is too vague. “It works” is too vague and
flippant. The “I” is ultimately not important. There’s
no description. It would be rejected in the change
request.

commit df8653a (HEAD -> main)
Author: joefg <joefg@example.com>
Date: Fri Apr 26 16:05:12 2024 +0100

Fixes bug with the widget button handler
that prevented it from firing,
updated test to match.

This is still partly in the past tense (“prevented”), and
it's all wedged into the header of the commit. There’s
no reference to a work item either. Like above, this
would be rejected in the change request.

A good example

commit df8653a (HEAD -> main)
Author: joefg <joefg@example.com>
Date: Fri Apr 26 16:05:12 2024 +0100

Fixes widget button handler bug

The widget button's handler would not fire
the event if the overall widget was still
loading. The fix is to remove the lock on
widget load so that the button handler can

cancel the widget loading and re-send it
with the new state of the button.

Amends tests in:

- Widget test

- Multiple widget test
- Weather widget test

Part-of ticket/100

This is better. The title is succint so the future devel-
oper can see where a bug was fixed while browsing
quickly through the commit history. If the future devel-
oper wants to see why the fix went in, he can read the
body. If he wants to see the ticket in which the issue
was raised, he can refer to the ticket in the part-of at
the bottom.

This is a good commit message, and would likely pass
a review.

Pushing your changes

Once your have made your changes, you can push
your branch.

If you don’t already have one set up, you can create
your repository on the Git host of your choice, then

run the following in the shell.
git remote add origin <repo-url>

Once you have done this, you can push it with git
push.

How to work with other developers

This is fine for when you're the only developer working
on a project, but what about when other developers
show up?

For this, you'll need to change your workflow. The
most basic workflow is Trunk-Based Development,
which uses main as the current state of work prior
to release with branches coming off that for features.

main -
o o N | o
va&w v&@b wg@ﬁ@ ,fy V&"‘%@ %A&Qﬁ) P «;fe\“’ g &@& ﬁ‘,@“ 0@3&:
rrr
Figure 7: Trunk-Based Development

Branching

Imagine two developers pushing to the main branch
at the same time. They will both run into problems

because the one who pushed first blocks the person
who pushes second.

It is very rare in industry to push straight to main. You
tend to work on branches instead.

To create a new branch from main and use it, do the
following:

git fetch main
git checkout main
git rebase

git checkout -b your-branch

Now you’re on that branch, you can make your com-
mits all you like without affecting main.

Remember to rebase main often so that any merge
conflicts are minimal when it comes time to raise the
change request.

Once you're done, you can push that branch, and your
Git repository host will be able to see that branch, and
many offer the ability to raise a change request for it
following a template.

Sending and applying patches

It is possible to send the output of a git diff to some-
one and for them to apply it. Doing this allows a de-

veloper to send a patch to another developer without
commiting it.

git diff > diff.patch

git apply diff.patch

This is particularly helpful when discussing a small
change on a change request.

Cherry picking

It is possible to add a commit from another branch to
the current branch with the cherry-pick command.

git cherry-pick <commit-sha>

This is particularly useful when bringing a fix from a
private branch into the current branch.

Change requests

Some hosts call these “merge requests”, some call
them “pull requests”. The term “change request” works
better because not all of these will use the git merge
or git pull commands depending on workflow.

Once you create a Change Request, it needs a few
things.

. A summary. Expand on what your commit mes-
sages were. Why would the reviewer want this
change? Does it meet the acceptance criteria?
Include screenshots for any UX work.

. Test instructions. How should a reviewer test
these changes? Include any test files, any test
configurations, and detailed instructions. If it's a
bug, include steps to reproduce it on main, and
those same steps should work on the branch
without that bug occurring.

. Caveats. Are there any compromises with this
change request? Does there need to be any
follow-on work?

. Deploy instructions. Will there be any further
work required to get this change into production?
Does this require any migration steps?

Once you have your change request, ask for a review
from a colleague.

Reviewing change requests

Suppose you’re now reviewing a colleague’s change
request. You should approach it like this:

1. Ask: does the summary make sense? What is

it that you'’re testing? If it's unclear, ask for a
clarification in the comments.

2. Are the test instructions clear? You should be
able to follow them from your existing computer.
If it requires additional setup, this should be clear
in the instructions. If they’re not, ask for a clarifi-
cation. Then follow the test instructions. If it fails,
mark it on the change request. Keep going until
you’'ve exhausted the instructions.

3. Caveats. Are they acceptable? Does this in-
troduce any unwanted precedent in the devel-
opment process? Should this caveat be docu-
mented elsewhere?

4. Deploy instructions. Has the developer missed
anything out?

Add your comments to the change request. Unless it’s
a simple one-line fix, change requests almost never
go in first time round. The nature of software means
someone always misses something. This is OK. This
is just part of the process. If it was easy, there wouldn’t
be this process.

Fixes in your change request

Your change request has been reviewed, and the re-
viewer asks for some fixups.

One approach to use for this is to use the --fixup and
--squash arguments to git commit. Ideally, it should
be one commit per point raised in the change request.

The git commit --fixup command works like this:

git add <file>

git commit --fixup <commit>
If your commit was this:

commit 00000 (branch)

This is a test commit

git commit --fixup 00000 creates a commit that
looks like this:

commit 11111 (branch)

fixup! This is a test commit

The git commit --squash command works the same
way, except you can add a commit message body
that gets put into the commit that the commit is being
squashed into.

Once you have made your fixups, push them, and
see if they address the points raised. Avoid force-
pushing at this stage. Force-pushing changes the
state on the remote, messing with the diff and making

it less clear which commits are fixes and which ones
aren’t.

If you get the all clear, you can then run the following
to automatically squash your history.

git rebase -1 --autosquash main

This opens an interactive rebase menu which should
have already arranged your fixup! commits in order.
Once you have rebased, you should be back down to
the number of commits you already had when going
into the review first time round.

Tagging

Git’s tag functionality provides a useful way to mark a
specific point in history with a human-readable string
of text.

In Trunk-Based Development, this is used to mark the
current state of production, and is set during release.
In many projects this is done by a project maintainer,
usually through the repository host’s Ul.

You can show tags by running git tag; you can
tag a commit by running git tag -a <tag-name>
<commit>, and you can delete a tag by running git
tag -d <tag-name>.

Sometimes you need to push a tag to test an on-tag
pipeline or similar. Make sure this isn’t confused with

a new version number by using the following structure:
<ticket-number>-<your-initials>-<tag-number>.

The “accepted” versioning system, commonly found
in open-source projects, is the Semantic Versioning
standard. Broadly speaking, this is:

<MAJOR>.<MINOR>.<PATCH>

where a Major version is for breaking changes, Minor
versions are for backward-compatible changes, and
Patch versions are for backward-compatible bug fixes.

A good history

The whole point of using Git in this way is to maintain
a log of which features went into a particular project,
at which dates, as part of which work orders.

Keeping a good history allows both experienced devel-
opers and newbies to see the evolution of the project.
In theory, it should be possible for someone to check
out to the very first commit and step their way through
the history to see how a product was built.

Keeping a good history from day one will pay dividends
in the long term. Don’t accept anything less than a
good development log.

https://semver.org/

Extras

Bisection

A git bisect allows a developer to perform a binary
search on a branch to find a commit which introduced
or removed a specific behaviour between two commits.

You can do this by running the following:

git bisect start
git bisect bad HEAD
git bisect good <commit>

This starts at the midpoint between the good commit
(earlier in the history) and the bad commit (later in the
history). If it's “good”, the developer can mark it with
git bisect good and the bisect moves to the middle
between that midpoint and the bad commit, and so on.
This takes what would be an 0(N) bug-finding mission
into an 0(logN) mission.

This can be streamlined further with git bisect run,
which allows a script to determine whether the run
was “good” or “bad”.

Semantic branches

Many organisations have a branch naming structure.
This should be clear to you when onboarding. The
standard the author uses is:

Type Branch name

Feature feature/<branch-name>
Bug Fix fix/<branch-name>
Private private/<name>/<branch-name>

A private branch isn’t truly private — once you push,
it’s visible to all with access to the repo to see.

Other ones I've seen include putting your username
in the branch name. This is an open-source trick. It
depends on the organisation and project. For open-
source projects, there’s usually some guidance in the
documentation on this matter.

Semantic commits

Sometimes, commit messages headers follow a pat-
tern.

The author tends to use the following:

Type Header

Feature feat: <header> or feature: <header>
Bug fix fix: <header>

Chore chore: <header>

Tech tech: <header>

Like above, it depends entirely on the project and
organisation.

Conventional commits

Conventional Commits is another standard for struc-
turing commits, with the benefit of being able to use
committizen to enforce the Conventional Commit style.

Broadly speaking, Conventional Commits follows this
pattern:

<type> [scope] [breaking] : <description>
[body]

[footer(s)]

Where the type is either fix for patches or feat for
features, with the optional scope being the thing that’s
being modified, a breaking change being represented
with an ! after that, followed by a terse description (all
of which should fit on one line).

There are variations on this discussed on the Conven-
tional Commits page. It is also perfectly acceptable to
follow the Angular Convention here.

Done properly, using Conventional Commits enables
the use of a Conventional Changelog, which save time
when building release notes.

https://www.conventionalcommits.org/en/v1.0.0/
https://commitizen-tools.github.io/commitizen/
https://github.com/angular/angular/blob/22b96b9/CONTRIBUTING.md#-commit-message-guidelines
https://github.com/conventional-changelog/standard-version

Linting commit messages

As your team gets larger, it may help to introduce some
linting to the commit messages so that all commits
adhere to a house style. One such tool to do this is
commitlint. Add this to your Cl and ensure that it has
been run with every push to origin.

Aliases

Git offers the ability to alias certain commands to short-
hand.

One is an unstage command which removes a file
from the staging area:

git config --global \
alias.unstage 'reset HEAD --'

This allows you to use git unstage in place of git
reset HEAD -- <file>.

Reflog

The reflog is a way of viewing the history of wherever
your HEAD was pointing to. It tracks where your HEAD
was at various stages.

For example: suppose a developer checkout to a pre-
vious commit (a detached HEAD), then you run git

https://commitlint.js.org/

reflog: it will show you where your HEAD was before,
so you can check out that reflog to re-attach the head.

It may look like this:

98513ee HEAD@{0}: commit: I broke the thing
e12553d HEAD@G{1}: commit: Thing works
bb046eb HEAD@{2}: commit: Add another thing
a21bdaf HEAD@{3}: commit: Add thing

If you want to reset the repository to a point prior to
HEAD, you can run git reset --hard HEAD{1}. The
usual caveats apply: you will lose those commits.

Local configuration

It is possible to set per-repository configurations.
Using git config --local sets a configuration value
in the repository’s own .gitconfig file, found in
.git/.gitconfig.

Git looks for a configuration in the following order:

1. System-wide: usually in /etc/gitconfig, or the
equivalent on your operating system.

2. User-wide: in 7/ .gitconfig.

3. Repository: in .git/.gitconfig.

Hooks

Git allows you to set automations to run either locally
or remotely when a specific action has been triggered.
Locally, these include:

* pre-commit: This is run prior to making a com-
mit. This can be used to trigger a run of a linter
or a type checker to ensure code quality at a
local level.

» commit-msg: This is used to generate a commit
message.

On a server, a pre-receive hook can be used to auto-
matically run a script to check for any credentials that
may have ended up committed. Ensuring code quality
is the work for ClI, not a hook.

You can find examples of these hooks in .git/hooks.
They tend to be implemented as shell scripts.

Porcelains

Git isn’t just a command line tool. Your favourite text
editor probably either has support for it, or a plugin is
available for it which supports it.

 Microsoft’s Visual Studio Code has support for it
built-in, including support for GitHub.

» Emacs has a plugin called Magit which provides

an interface for interacting with a Git branch in
Emacs.

* Vim has Vimagit, which does above but for Vim.

* gitg and gitk offer a GUI over Git.

« Sublime Merge is a commercial offering which
offers a graphical interface to Git.

Figure 8: gitg

Alternative workflows

Trunk-Based Development isn’t the only way to use
Git.

text.md (Working Tree) (text.md) - git-for-grads - Code - 0SS

Edit Selection View Go Run Terminal Help

<

/ Commit

Changes
textmd a9+ M

gitg.png probabl

has support for i i supports

Magit® which provid

graphical

X Pmain* ®OA0 —NORMAL Markdown Q1

Figure 9: VSCode

Centralised

A centralised workflow is where the developer doesn’t
push any branches themselves. Instead, they work on
a local copy of main, make their changes, rebase from
origin/main, and then push.

This is OK for small projects, but as more developers
enter the project, this becomes unwieldy. It requires
spotless communication between developers, but even
if every developer communicates well, merge conflicts
have to be resolved on main.

Short-Lived Feature Branching

This is similar to Trunk-Based Development except
feature branches last no longer than a few hours. This
is done to prevent branches from becoming stale, and
it keeps feature size to a minimum.

Personal Branching

Instead of a branch per feature, each developer has
their own branch. The benefit is that there are fewer
branches to manage, and the developer is solely re-
sponsible for managing their history. Trunk-Based
Development can use this too: having a long-running
personal branch is helpful for research and develop-
ment tasks, but the developer must take care to rebase

their branch often to resolve merge conflicts before
they become big.

Forking

This requires the use of a Git host’s Fork feature. Each
developer makes a repository-level fork of the project
and pushes their changes to that, with the developer
of the project’s main repository integrating changes
from that fork when required.

This is more complex than the others. It's most often
used in open-source software development of complex
projects.

	About
	What Git is
	Why you should use it
	Where you can get it from
	Linux
	MacOS
	Windows

	How to configure it
	How to use it
	Initialising a repository
	Terminology
	Making changes
	Commit editors
	Anatomy of a commit

	The staging area
	Ignoring files
	Viewing history
	Searching
	Merging and Rebasing
	Merge
	Rebase
	Rule of thumb

	Fetching changes
	Merge conflicts
	Conflict resolution tools

	How to (re)write history
	Rebasing
	Interactive Rebasing

	What a commit should contain
	Writing a good commit message
	Bad examples
	A good example

	Pushing your changes

	How to work with other developers
	Branching
	Sending and applying patches
	Cherry picking
	Change requests
	Reviewing change requests
	Fixes in your change request

	Tagging
	A good history

	Extras
	Bisection
	Semantic branches
	Semantic commits
	Conventional commits
	Linting commit messages
	Aliases
	Reflog
	Local configuration
	Hooks
	Porcelains
	Alternative workflows
	Centralised
	Short-Lived Feature Branching
	Personal Branching
	Forking

